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What Can Digital Disease Detection Learn from
(an External Revision to) Google Flu Trends?
Mauricio Santillana, PhD, MS, D. Wendong Zhang, MA, Benjamin M. Althouse, PhD, ScM,

John W. Ayers, PhD, MA

Background: Google Flu Trends (GFT) claimed to generate real-time, valid predictions of
population influenza-like illness (ILI) using search queries, heralding acclaim and replication across
public health. However, recent studies have questioned the validity of GFT.

Purpose: To propose an alternative methodology that better realizes the potential of GFT, with
collateral value for digital disease detection broadly.

Methods: Our alternative method automatically selects specific queries to monitor and autono-
mously updates the model each week as new information about CDC-reported ILI becomes
available, as developed in 2013. Root mean squared errors (RMSEs) and Pearson correlations
comparing predicted ILI (proportion of patient visits indicative of ILI) with subsequently observed
ILI were used to judge model performance.

Results: During the height of the H1N1 pandemic (August 2 to December 22, 2009) and the 2012–
2013 season (September 30, 2012, to April 12, 2013), GFT’s predictions had RMSEs of 0.023
and 0.022 (i.e., hypothetically, if GFT predicted 0.061 ILI one week, it is expected to err by 0.023) and
correlations of r¼0.916 and 0.927. Our alternative method had RMSEs of 0.006 and 0.009, and
correlations of r¼0.961 and 0.919 for the same periods. Critically, during these important periods,
the alternative method yielded more accurate ILI predictions every week, and was typically more
accurate during other influenza seasons.

Conclusions: GFT may be inaccurate, but improved methodologic underpinnings can yield
accurate predictions. Applying similar methods elsewhere can improve digital disease detection,
with broader transparency, improved accuracy, and real-world public health impacts.
(Am J Prev Med 2014;47(3):341–347) & 2014 Published by Elsevier Inc. on behalf of American Journal of
Preventive Medicine

Introduction

The rapid escalation of digital methods is changing
public health surveillance.1–3 By harvesting web data,
investigators claim to validly estimate cholera,4

dengue,5,6 influenza,7,8 kidney stones,9,10 listerosis,11 methi-
cillin-resistant Staphylococcus aureus,12 mental health,13 and
tobacco control14 trends, but are they actually valid?
The novelty of digital data has generally remained the

central focus in these studies, whereas the methods and
disinterested interpretations have been overlooked.

Therefore, studies demonstrating modest associations with
ground truth outcomes (e.g., R2¼0.15,14 R2¼0.25,4 or
R2¼0.6211) have been presented as accurate, without further
model validation.Most notable is Google Flu Trends (GFT),8

not because it is potentially the most flawed but because it is
oft-cited and many subsequent studies modeled their
approach after GFT or even used weaker methods.6,12,15,16

Concerns about GFT’s accuracy came to light via
media reports in 2009 when it misrepresented the
epidemic curve and required updating that Autumn.17

Again during 2012–2013, media reports questioned the
revised GFT,18 followed by separate peer-reviewed anal-
yses suggesting GFT was typically inferior to traditional
sentinels owing to inaccuracies.19,20 Most recently, Goo-
gle again updated their model to improve GFT operation
but did not identify their revisions or describe its
performance.21 Many, unfortunately, are unaware of
these problems.
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The head of the CDC Influenza Surveillance and
Outbreak Response Team told Nature News that she
monitors GFT (and other digital disease detection senti-
nels) “all the time,” likely in the sense that some data are
better than no data.18 Moreover, some investigators are
beginning to use GFT as ground truth for epidemiologic
studies.22 However, if GFT (and by extension similar
systems for other outcomes) are invalid, should public
health officials be paying any attention?
We remain optimistic about the future of GFT and

digital disease detection broadly23–26 because a methodo-
logic problem has a methodologic solution. Herein, a
transparent, external evaluation of GFT, as a case study
for the scientific status of digital disease detection, is
presented. An alternative methodology capable of out-
performing GFT is subsequently proposed, with potential
application across digital disease detection.

Methods
The methodology behind the original GFT and the 2009 revision
(published in 2011) consisted of building a regression for CDC-
reported influenza-like illnesses (ILI) with a single explanatory
variable. Originally, the single variable was the mean trend for the
45 search terms with the strongest correlation with ILI for
September 28, 2003, through March 11, 2007.8 The revised GFT
single variable was the mean trend for the most correlated search
terms (approximately 160, the exact number unknown) for
September 28, 2003, through September 13, 2009, after removing
terms related to influenza complications and general interest in
influenza (with the exact terms unknown).17 Both generated ILI
predictions at time (t) using search data from (t) and historic
periods, but because CDC-reported data are delayed, these
estimates are typically available 1–2 weeks ahead of the CDC’s.

The original and updated GFT methodology is problematic for at
least three reasons. First, combining multiple queries into a single
variable ignores the variability in individual search query tendencies
over time and how certain unique queries may be better predictors.8

Second, the exclusion of search queries in the revised GFT relies on
investigator opinion rather than any empirical evidence.17 Third, the
model is static, assuming that queries predicting ILI at time (t) will
equally predict ILI at time (t þ x years). The language of searches
undoubtedly changes over time (e.g., swine flu, H1N1, H1N9) and
must be accounted for in any prediction model.

Our alternative approach, inspired by data-assimilation techni-
ques,27,28 supervised machine learning,29 and artificial intelli-
gence,30 expands upon (1) their single explanatory-variable
approach, by allowing multiple individual queries to contribute
independently to the prediction; (2) their quasi-nonempirical
search query selection, by empirically choosing search queries that
maximize predictive accuracy in real time; and (3) their use of
manual revisions, by dynamically updating how individual queries
predict influenza each week to ensure accurate prediction across a
changing search and influenza landscape. All improve the trans-
parency of GFT.

These revisions are executed in a multivariable linear model with
different coefficients for each specific search query trend. Each query

is prescribed a different level of importance based on its coefficient,
determined by a LASSO for the best predicting and most parsimo-
nious model.31 The coefficients change each week based on refitting
the model at time (t) to ILI through (t – 2), representing the latest
available CDC ILI estimates if the system was running in real time.
The equation is given by the following simplified notation:

logit I tð Þ½ &¼∑n
i¼1aiðtÞlogit½QiðtÞÞ&þe; ð1Þ

where I(t) is the percentage of ILI physician visits, Qi tð Þ is the query
fraction for term i at time t, aiðtÞ is the multiplicative coefficient
associated to such term at time t, e is the normally distributed error
term, and logit(p)¼ ln[p/(1 – p)]. The mathematical foundations of
this method and other methodological considerations were reported
by Zhang.32

The criterion is the weekly percentage of confirmed ILI-related
physician visits (e.g., fever 41001F and cough or sore throat as a
percentage of all outpatient healthcare provider visits nationally to
42,900 reporting clinics) publicly available at (cdc.gov/flu/weekly/).
Predictions were made for the entire U.S., following the strategy
used in media critiques and Google’s revisions.17,21

For the explanatory variables, our alternative conceptually relies
on the same initial selection strategy used by GFT: time trends for
the Google queries most strongly correlated with ILI. Google
Correlate (google.org/trend/correlate) returned the weekly z scores
of the query fractions spanning January 2004 toMay 2013 of the 100
Google terms most correlated with CDC-reported ILI from Sep-
tember 28, 2003, to March 22, 2009, as accessed on October 17,
2013, and still available today. These 100 terms were the fixed inputs
in the model, where the query fraction of each term is the total count
of a query term in the U.S. aggregated weekly and then scaled by the
total count of all queries issued in the same week.8 This choice
simulates the selection process that could occur if this methodology
operated in real time and had been implemented since March 22,
2009. Unlike Google, our alternative method did not filter this list of
queries based on either the intensity of the correlation or the query
content but used all 100 most correlated queries, anticipating the
model would then select queries to maximize prediction.

For performance benchmarks, our alternative model was
implemented for March 22, 2009, through May 2013, fitting to
early trends (since January 1, 2004) as a training period. Pearson
correlation coefficients and root mean squared errors (RMSEs)
comparing predicted ILI with subsequently observed ILI were used
to judge model performance. The latter was added to accurately
assess performance when correlation may not (i.e., two trends may
have r¼1.00 correlation, but differ by a constant factor).

For comparisons to GFT, we relied on the estimates made by
GFT as events unfolded. As GFT was updated after the H1N1
season in 2011, the GFT webpage returns those updated results,
but the national predictions originally made by GFT were down-
loaded through December 27, 2009, from Figure 1 in the Google
revision.17 For later periods, GFT predictions were simply down-
loaded in the summer of 2013 (google.org/flutrends). All analyses
were conducted in R, version 2.15.3.

Results
Figure 1 presents GFT’s and our alternative model’s
predictions alongside the subsequently observed ILI
trends, where it is readily apparent that the alternative
produced more accurate predictions.
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DuringWave 1 (March 29 through August 2, 2009) and
Wave 2 (August 3 through December 27, 2009) of the
H1N1 outbreak, particularly important periods of ILI
surveillance, the RMSEs were 0.008 and 0.023 (i.e., if GFT
predicted 0.061 ILI, it would be have a usual error of 0.008
or 0.023 each week) with correlations of r¼0.290 and
r¼0.916 for GFT (Table 1). In contrast, our alternative
model had RMSEs of 0.002 and 0.006 with correlations of
r¼0.887 and r¼0.961. In practical terms, our alternative
model yielded more accurate predictions in 17 of 19 weeks
during Wave 1 and every week (21 of 21) during Wave 2.

For example, the original GFT pre-
dicted an estimated 4.3% peak ILI
compared to a 7.7% CDC-reported
ILI, an absolute difference of 3.4%,
whereas our alternative model pre-
dicted an 8.0% peak, an absolute
difference of 0.3%.
Our alternative predictions were

often better than GFT during other
influenza cycles. For December 28,
2009, to September 29, 2012, the
alternative predictions had smaller
error (RMSE¼0.002, r¼0.978, vs
GFT RMSE¼0.003, r¼0.912), sug-
gesting a relative 33% reduction
in error (i.e., [0.003–0.002]/0.003).
Again, in practical terms, the alter-
native model was more accurate in
126 of 176 weeks (72%), with
several periods where the alterna-
tive model produced predictions
that mirrored ILI when GFT was

mis-predicting ILI by !1%.
During the 2012–2013 season, the GFT’s RMSE was

0.022 vs 0.009 for our alternative model, with correla-
tions of r¼0.927 and r¼0.919. In practical terms, our
alternative yielded more accurate predictions every single
week. For example, GFT predicted a peak ILI of 10.6% vs
6.1% for CDC-reported ILI, an absolute difference of
4.5%, compared to a 7.7% peak estimate from our
alternative method, an absolute difference of 1.6%.
The autonomous and dynamic nature of our alter-

native appears to be a key component to improved
predictions (Figure 2). First, the model automatically

Table 1. Predictive accuracy of the alternative model and Google Flu Trends

H1N1 (Wave 1) H1N1 (Wave 2) Post-H1N1 to 2012 season 2012–2013 season
(3/29/09–8/2/09) (8/2/09–12/27/09) (12/27/09–9/30/12) (9/30/12–5/12/13)

Correlation

Alternative 0.887 0.961 0.978 0.919

GFT (original) 0.290 0.916 — —

GFT (updated) — — 0.912 0.927

RMSE

Alternative 0.002 0.006 0.002 0.009

GFT (original) 0.008 0.023 — —

GFT (updated) — — 0.003 0.022

Note: Both GFT and the alternative method generated predictions for ILI at time (t) using search data from the same week (t) and historic periods, but
because ILI is delayed, these estimates were typically available 1–2 weeks earlier than CDC-reported ILI.
GFT, Google Flu Trends; ILI, influenza-like illness; RMSE, root mean squared error

Figure 1. The alternative model outperforms Google Flu Trends
Note: Both GFT (dot) and the proposed alternative model (dash) are shown against the criterion (solid)
measure of national CDC-reported ILI (the weekly percentage of confirmed ILI-related physician visits
(e.g., fever 41001F and cough or sore throat as a percentage of all outpatient healthcare provider
visits nationally to42,900 reporting clinics). Both GFT and the alternative model generated predictions
for ILI at time (t) using search data from the same week (t) and historic periods, but because ILI is
delayed, these estimates were typically available 1–2 weeks earlier than CDC-reported ILI.
GFT, Google Flu Trends; ILI, influenza-like illness
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excludes or reduces the predictive influence of many non-
influenza terms. For example, “chaos tour” is typically
given zero or little weight in the predictions without
relying on human opinion as in prior revisions to GFT.
Second, there is great variability in the coefficient
estimates for each term by each week, where the alter-
native is automatically updated in response to how terms
are indicative of ILI or not from the recent past. For
example, terms indicative of influenza concern are given
diminishing predictive value over time and those indica-
tive of treatment/complications are given more predictive
value (i.e., “is flu contagious?” versus “expectorant”).
Most importantly, our alternative does not guarantee

accurate predictions, but when predictions do go astray, the
alternative learns from its mistake in just 2 weeks, rather
than waiting 2 years for a manual revision.17 At the height
of the 2012–2013 season, the alternative mis-predicted the
peak ILI proportion by a nontrivial amount, but the model
self-corrected, changing the queries included/excluded just
2 weeks later (when the model was first aware of the error
because of the delay in CDC-reported ILI). In response to
the model error after the aforementioned peak, for example,
“flu incubation” queries were negatively weighed to lower
the prediction of ILI. Clear shifts in coefficient values for
dozens of other queries were observed in this time period as
well. These can be seen in the latter portion of Figure 2.

Discussion
Our alternative methodology is capable of producing more
accurate predictions of influenza activity than GFT, and
does so autonomously with dynamic updating of the model
each week. With 3–5 million infected and 250,000–500,000
killed by influenza worldwide each year,33 influenza
surveillance is of tremendous importance, providing nec-
essary intelligence for hospitals facing staffing decisions,
physicians facing active and accurate diagnoses, employers
with workers at risk for infection, and public health officials
making recommendations for protecting unvaccinated
individuals. Yet, these results have even greater implica-
tions as a case study for digital disease detection broadly.

Implications for the Next Google Flu Trends
In a brief working paper, Google recently described the
need to revise GFT.21 They acknowledged that a multi-
variable approach (one of the improvements imple-
mented here) would enhance the accuracy of GFT, but
that paper also shared many of the weaknesses inherent
in the original and first revision to GFT that our
alternative may overcome. First, the methods lacked
transparency, as the working paper did not identify the
model they were implementing.21

Second, the predictive validity of the revised GFT
remains unknown, because Google.org only included 5
weeks of data in the paper estimating the predictive
accuracy. Using this small sample of data, however, our
alternative method appears to be a better predictor. Last,
their revision still relied on investigator opinion to select/
omit some queries and failed to incorporate automatic
updating, as we added herein.
Therefore, our alternative method may serve as the

foundation for another revision to GFT. Specifically,
because much of the alternative is automated, it can be
scaled up (e.g., Google could apply it to thousands of
strongly correlated search terms instead of just 100 as
herein). Our study is just an initial step toward improv-
ing GFT, as the structure around our model can be
further refined to yield even greater accuracy. Moreover,
by making the inner workings of GFT and the data
behind GFT more public, such improvements may be
more quickly realized by other external teams.19,20

Implications for Digital Disease Detection
It is important to appraise how the leading system in the
field, GFT, produced questionable predictions, while
investigators mimicked the methods behind
GFT6,12,15,16 and few levied significant criticisms,19,20,34,35

and how this omission can serve as a call for action
within the field.
One European study found that GFT predictions

before and during the H1N1 pandemic were only crudely
associated with influenza (ρ=0.39 and 0.52, respectively),
but concluded that GFT provided accurate detection.36

Analyses from Australia,37 China,38 Japan,39 New Zea-
land,11 and the U.S.40 suggest that GFT predicted larger
incidences and missed the timing of outbreaks. Yet, these
studies concluded that GFT was valid, with one calling
the accuracy of GFT “remarkable,”37 as also quoted in a
Google-led publication.17 This disparity in results and
praise is indicative of a larger problem in digital disease
detection.
Many of the current studies are the first of their kind

and deserve praise as such, but to move this potentially
important field forward, investigators and public health
leaders need to exercise caution and become discerning
scientific consumers. Claims need to be carefully cri-
tiqued, as nearly all of the literature on digital disease
detection4,6,9–14,41 relies on weak methodologic
approaches or patterns of association similar to GFT,
with rare exception.5,42–45 Thus, investigators should
turn to more sophisticated approaches for the develop-
ment and evaluation of digital systems. The stakes are
high in public health surveillance and the methodologic
bar must be raised higher accordingly.
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Figure 2. Search term inclusion and dynamic updating over time in the alternative model
Note: Each line is an indicator of the estimated coefficient for a specific search term (y axis) updated each week (x axis). Colors indicate the relative
importance of the search term (positive in blue, negative in red) on prediction over time. For example “flu in children” has a uniformly positive
prediction and “St. Louis Cardinals spring training” has a nearly uniform zero effect. This figure shows how the alternative model is autonomously
selecting queries and updating the relative value assigned to these queries each week
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Yet, we remain optimistic about digital disease detec-
tion, because as with all adolescent fields there needs to
be periodic methodologic critique and revision. Building
on this study and the work of others,19,20 digital disease
detection may better realize its aims.

Limitations
Though advancing the underpinnings of GFT and digital
disease detection, the alternative method is not without
limitations. As usual, the alternative method was only
evaluated at one geographic resolution, and model fits
may vary in other geographies, especially those for which
there is no ground truth to compare the model predic-
tions against. In addition, CDC-reported ILI estimates
(the ground truth) sometimes are later revised as the
influenza season progresses,46 thus introducing uncer-
tainties in the (or any) prediction methodology.
In this regard, the dynamic alternative approach is

capable of incorporating information as it becomes
available, and thus will automatically produce an
improved model every time CDC ILI information is
either initially released or revised. Finally, Google queries
are but one source of information and a multi-sourced
model would be preferred, but through appropriate
modeling, searches can be leveraged to achieve accurate
predictions that better realize the implications of GFT.8

Conclusions
The methods behind digital disease detection are wanting,
but by outlining a correction that could improve the accuracy
of influenza detection, we hope public health officials find
value in digital disease detection and investigators refine our
approach to achieve more transparent and accurate surveil-
lance that can have real-world public health impacts.
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